Morphology, structure and interface properties in metal/oxide systems

Paola Luches

S³, Istituto Nanoscienze Consiglio Nazionale delle Ricerche Modena Italy

overview

+-

1. cerium oxide ultrathin films on Pt(111)

growth of Ag nanoparticles

- Introduction
- morphology, composition and structure
- the CeO₂/Pt interface

- 2. the Fe/NiO interface
- introduction
- depth-resolved magnetic characterization by NRS

cerium oxide

store, transport and release oxygen

cerium oxide

catalytic converters

- oxidize CO to CO₂
- reduce NO_x to N₂
- self clean from C deposits

solid-oxide fuel cells

- solid electrolyte high conductivity for O ions
- production of hydrogen water gas shift theromochem. water splitting

cerium oxide

 $\begin{array}{lll} \text{model systems} & \Rightarrow & \text{understand and optimize} \\ & & \text{the properties} \end{array}$

previous studies

experimental

substrate

Pt(111) → $a_{Pt}=2.775 \text{ Å}$ $a_{CeO2}=3.826 \text{ Å}$ m=38% <u>CeO₂ growth conditions</u>

$$R_{Ce} = 3 \times 10^{-3} \text{ Å/sec}$$
 @ RT
 $P_{O2} = 1 \times 10^{-7} \text{ Torr}$

Ce 3d XPS

ION	Initial state	Final state	peak
Ce ³⁺	$3d^{10}4f^{1}$	$3d^94f^2V^{n-1}$	v ⁰ , u ⁰
	$3d^{10}4f^{1}$	$3d^94f^1V^n$	v', u'
Ce ⁴⁺	$3d^{10}4f^{0}$	$3d^94f^2V^{n-2}$	v, u
	$3d^{10}4f^{0}$	$3d^94f^1V^{n-1}$	v", u"
	$3d^{10}4f^{0}$	$3d^94f^0V^n$	v"", u""

M. Romeo, et al. Surf. Interface Anal. 20 (1993) 508. Skala et al. J. Electron Spectrosc. Rel. Phen. 169 (2009) 20

stoichiometry

annealing @1040 K in O₂ oxidizes the films Ce 3d XPS

annealing in UHV reduces the films

structure

LEED E=80 eV

clean Pt(111)

epitaxial films

(111) CeO₂ <110>_{CeO2}//<110>_{Pt}

morphology

20M2 Ms deprosited (0 KCO)2

<u>1. Large islands</u> \rightarrow CeO₂

- 30-50 nm wide
 6 Å (2 O-Ce-O ML) high
- > atomically flat
- preferentially at Pt step edges
- straight edges, kinks at 120°

morphology

0.2 ML ann. 1040 K O₂

0.5 V 0.2 nA

1. Small islands

- ~ 5 nm wide
 - ~ 3 Å high
- > atomically flat
- uniformly distriubuted
- \succ triangular shape (kinks at 60°)

0.7 ML CeO₂ 0.1nA

morphology

 α -PtO₂(0001) nanoislands

S.A. Karsnikov et al. Nanotech. 21 (10) 335301

$$s_{PtO2 \rightarrow Pt} = 3\%$$

 $s_{CeO2 \rightarrow PtO2} = -3\%$

 PtO_2 islands may act as a template for the stabilization of CeO_2 in the observed epitaxial orientation

morphology

3.4 ML CeO_2

- \succ flat CeO₂ terraces
- > straight edges 120°
- > linear defects

Ag/CeO₂

0.07 Å Ag / 3 ML CeO₂

d=0.5-3nm h=0.5-1 nm

0.2 Å Ag / 3 ML CeO₂

d= 2-5 nm h=0.5-2 nm

- decoration of CeO₂-CeO₂ steps
- hexagonal shape \rightarrow (111) orientation

epitaxy

Ag film on CeO₂

a_{CeO2}=3.826 Å a_{Aq}=2.892 Å

m=32%

Ag/CeO₂

ceria reduction higher Ag 3d BE

oxidation, dimensionality, charge transfer

Fe/NiO

motivation

F/AF interface – exchange bias

exchange bias

pinning of the magnetization of one of the FM layers in magnetoresistive

devices

extra source of anisotropy to shift the SPM limit in ultrahigh density magnetic memories

V. Skumryev et al., Nature 423 (2003) 850.

• no complete and quantitative physical model of exchange bias

• strong dependence on the structure of the interfaces

study of atomic-scale characterized systems

previous studies

bct Fe-Ni alloy formation (3 ML)

P. Luches et al., Surf. Sci. 532 (2003) 409.S. Benedetti et al., Surf. Sci. 572 (2005) L348.

planar FeO-like phase

P. Luches et al. , Phys. Rev. Lett. 96 (2006) 106106.

NiO reduction+ Fe oxidation

T.J. Regan et al., Phys. Rev. B 64 (2001) 214422. R. De Masi et al. Surf. Sci. 513 (2002) 523.

magnetic properties

MOKE

no EB for $t_{NiO} \le 25 \text{ ML}$

H_{EB}= -220 Oe

P. Luches et al., PRB 81 (2010) 054431

Fe

NiO

magnetic properties

exchange bias

role of the interface

oxidized Fe phase uncompensated moments in NiO

coercive field

depth resolved magnetic characterization by NRS

P. Luches et al., PRB 81 (2010) 054431

P. Luches et al., NIMB 268 (2010) 361.

experimental

comparison with theory

$$B_{hf} = B_C + K_{dip} + K_{rb}$$

$$B_{C} = B_{core} + B_{val}$$

$$B_{val} = B_{LOC} + B_{NON-LOC}$$

$$|B_A| = |B_{core} + B_{LOC} + 4B_{NN}|$$
$$|B_B| = |B_{core} + B_{LOC} - 4B_{NN}|$$

asymmetry in positive and negative B_{hf}

mple	Component	IS	B _{HF} (T)	$\Delta B_{\rm HF}$ /	RW (%)	
	#	(mm/s)		$\mathbf{B}_{\mathbf{HF}}(\%)$		
	1	0 fixed	-33.5 (2)	6 (1)	60 (6)	
			$\left(\right)$			
	2	0.42 (5)	-37.2 (3)	11 (2)	20 (2)	
	3	0.42 (5)	+25.3 (5)	90 (5)	20 (2)	

⇒ antiferromagnetic FeO phase

P. Luches et al., PRB 83 (2011) 094413

summary

CeO₂

- $CeO_2(111)$ films with wide flat terraces can be obtained on Pt(111)
- the Ce³⁺ concentration in the films can be reversibly modified by thermal treatments in UHV or $\rm O_2$
- Ag nanoparticles reduce ceria and have a higher 3d BE than the bulk

Fe/NiO

- an antiferromagnetic Fe oxide layer is present at the interface
- DFT calculations can be of great help to interpret the NRS data

People

@ S3

Sergio Valeri Stefania Benedetti Federico Pagliuca Sergio D'Addato Alessandro di Bona Salvatore Altieri Federico Boscherini Luca Pasquini University of Bologna, Italy

Rudolf Rüffer ESRF, Grenoble, France

J. Korecki AGH and ISSC, Krakow, Poland

Theory: Valerio Bellini and Franca Manghi